Affiliated with:

Metadata 19

Managed metadata using a repository is the foundation of a successful decision support or analytics system.  Business intelligence needs metadata’s capabilities.


Building a metadata repository MME  is critical for accessing, maintaining, and controlling the vital information stored in our decision support (DSS) or analytics systems.  While metadata has always been a central covenant of data warehousing, especially at EWSolutions, recently it has been brought further into the spotlight as most Fortune 1000 companies have some sort of data warehouse decision support data warehouse  or analytics system currently in place, most for several years.  The vast majority of these companies have had to struggle with the task of managing the exponential growth of these decision support services (DSS) / analytics systems over time.  Without metadata, the task of managing this growth becomes overly difficult and time consuming.  This need has driven many major software vendors like Microsoft, CA, Oracle, and IBM to enter the metadata marketplace with significant product offerings.  It is important to understand the benefits of implementing a metadata repository to support a company’s decision support / analytics system efforts.

Reduces Development Costs

DSS and analytics systems grow very rapidly.  As a result, these systems  will need to be modified through a process of iterative steps.  Each of these steps will require an analysis of the current data warehouse environment.  The repository will significantly reduce the cost of development and the time frame needed to do it in.  It accomplishes this by documenting the data transformation rules, data sources, data structures, and the context of the data in the data warehouse and data marts. This is critical because without the repository the transformation rules would only be contained in the IT staff’s memory. The metadata significantly aids the analyst as they examine the impact of proposed changes into the DSS environment. This benefit will reduce the costs of future DSS releases and help to reduce the propensity of new development errors.

Improved Error Resolution

The metadata repository will reduce the turnaround time for production related problem resolution.  If a DSS production problem is identified the development team can use the repository to quickly gather information related to the problem. This is very valuable, as the business users have come to depend on the information contained within the data warehouse to make their strategic decisions. The less “down time”, the warehouse experiences the greater payback the business users will experience.

Delivering Business Intelligence

A central objective of any corporation’s business intelligence strategy is to improve the value that the information in the DSS system provides to the business user. The ultimate goal of the metadata repository is to drive the business user’s access to the information stored in the DSS system. This can be achieved as the business and technical metadata are directly linked to the information stored in the DSS system.  This greatly increases the usability of the DSS systems to the business users.

To understand metadata’s vital role in the data warehouse, consider the purpose of a card catalog in a library.  The card catalog identifies what books are in the library and where they are physically located.  It can be searched by subject area, author, or title. By showing the author, number of pages, publication date, and revision history of each book, the card catalog helps you determine which books will satisfy your needs. Without the central card catalog information system, finding books in the library would be a cumbersome and time-consuming chore.

Metadata is the card catalog in a data warehouse. By defining the contents of a data warehouse, it helps the user to locate relevant information for analysis. In addition, the metadata allows the user to trace data from the data warehouse to its operational source (drill-down) and to related data in other subject areas (drill-across). By managing the structure of the data over a broad spectrum of time, it provides a context for interpreting the meaning of the information. As metadata is extracted and stored over several years, snapshots of the data exist for each year.  In order to accomplish this the meta model tables need to be captured with a “From” and “”To” date on each column.  This will allow the users to easily trace back through the repository to past versions of the metadata.


A metadata repository built with the business users in mind and created on a technologically sound architecture lifts the data warehouse from a stovepipe application to a true business intelligence system.  Even with the changing state of the metadata repository marketplace, the alternative of not building a repository will not satisfy the needs of the business users or the data warehouse staff that will need to maintain the DSS / analytics system over time.  This challenge of implementing a metadata repository is one of the chief mitigating factors that have prevented most organizations from achieving successful data warehouse and data mart implementations.


Dr. David P. Marco, LinkedIn Top BI Voice, IDMMA Data Mgt. Professional of the Year, Fellow IIM, CBIP, CDP

Dr. David P. Marco, PhD, Fellow IIM, CBIP, CDP is best known as the world’s foremost authority on data governance and metadata management, he is an internationally recognized expert in the fields of CDO, data management, data literacy, and advanced analytics. He has earned many industry honors, including Crain’s Chicago Business “Top 40 Under 40”, named by DePaul University as one of their “Top 14 Alumni Under 40”, and he is a Professional Fellow in the Institute of Information Management. In 2022, CDO Magazine named Dr. Marco one of the Top Data Consultants in North America and IDMMA named him their Data Management Professional of the Year. In 2023 he earned LinkedIn’s Top BI Voice. Dr. Marco won the prestigious BIG Innovation award in 2024. David Marco is the author of the widely acclaimed two top-selling books in metadata management history, “Universal Meta Data Models” and “Building and Managing the Meta Data Repository” (available in multiple languages). In addition, he is a co- author of numerous books and published hundreds of articles, some of which are translated into Mandarin, Russian, Portuguese, and others. He has taught at the University of Chicago and DePaul University.

© Since 1997 to the present – Enterprise Warehousing Solutions, Inc. (EWSolutions). All Rights Reserved

Subscribe To DMU

Be the first to hear about articles, tips, and opportunities for improving your data management career.